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Comment on “‘Self-organized criticality and absorbing states: Lessons from the Ising model”
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According to Pruessner and Peters [G. Pruessner and O. Peters, Phys. Rev. E 73, 025106(R) (2006)], the
finite-size scaling exponents of the order parameter in sandpile models depend on the tuning of driving and
dissipation rates with system size. We point out that the same is not true for avalanches in the slow driving

limit.
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In a recent paper, Pruessner and Peters investigated the
relation between self-organized criticality (SOC) in sandpile
models and absorbing state phase transitions, on the basis of
an analogy with standard equilibrium critical phenomena, in
particular, the two-dimensional Ising model [1]. According to
Ref. [1], only a careful choice of the system size dependence
of the driving and dissipation parameters would yield the
scaling results of the underlying phase transition. Here we
point out that this reasoning does not apply, in particular,
when one studies “SOC variables” such as various measures
of avalanches in the slow driving limit, as is traditionally
done in this context. This is confirmed by numerical simula-
tions presented below.

In SOC sandpile models, the steady state is maintained by
a balance of dissipation € and driving 4. In particular, the
control parameter of the absorbing phase transition, i.e., the
average height of the pile ¢, evolves on the average as

{=h-ep, (1)

where p is the density of active sites, the order parameter of
the absorbing phase transition. In the limit #— 0%, e— 0",
the control parameter flows to the critical value . and the
model shows scale invariance [2]. The question raised by the
authors of Ref. [1] is, how to apply finite-size scaling (FSS)
to the order parameter p if e(L)~L™™ and h(L)~L™® are
taken to be functions of the system size L. To investigate this
issue, Pruessner and Peters employ a similar “driving” to the
Ising model, using a fluctuating inverse temperature 6 evolv-
ing as

O=h—éem

, 2)

where |m| is the absolute value of the magnetization. Using
this driving, the system size dependence of the order param-
eter (|m|) ~ L coincides with that expected from standard
FSS only when w—«=p/v, where 8 and v are the equilib-
rium exponents for the order parameter and the correlation
length, respectively. We notice that the case w—«> /v cor-
responds precisely to the slow driving limit of SOC, where
there is complete time-scale separation between driving and
dissipation (i.e., for most purposes one may even take w
— o and wait an infinite amount of time after each driving
event). In this limit, the effective temperature defined in Ref.
[1] also would diverge. The authors, in analogy with the
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Ising model, conclude that the slow driving SOC state should
not correspond to the critical point of an absorbing phase
transition, in contradiction with the evidence from numerical
simulations of sandpile models [3].

The apparent contradiction disappears when we notice
that avalanche statistics, as typically studied in the case of
SOC, and the average order parameter studied in Ref. [1] are
not equivalent measures of the criticality of the underlying
absorbing state phase transition. As pointed out by Pruessner
and Peters, it is indeed possible to tune the system size de-
pendence of the order parameter, or average activity, by
choosing the size scaling of driving and dissipation rates
appropriately. In the slow driving limit relevant for SOC,
however, this is just a trivial consequence of the drive rate
dependence of the quiescent periods between avalanches.
The avalanches themselves are not affected by the drive rate
in any way as long as it is slow enough such that no new
grains are added while the system is active.

In SOC sandpiles, one usually implements open boundary
conditions and infinitely slow drive, corresponding to k=2
and w— . The mappings to absorbing phase transitions and
to depinning transitions allows one to obtain the scaling be-
havior for any value of «, provided that we remain in the
time-scale separation regime [2]. In general, sandpile models
exhibit FSS forms for the avalanche size s, of the type

P(s,&) = sTP(s/€P). 3)

7, and D are critical exponents related to the underlying de-
pinning transition and &, «) is the cutoff scale that is de-
termined by the condition of balance between dissipation and
drive (which also results in the steady state condition p
=h/e€). One transparent argument to compute £ is to look at
the dynamics following the addition of a single grain, which
gives rise to an avalanche of average size (s) dissipating on
the average one grain [4]. Thus one has the condition
e(L){(s)(é)=1 and obtains

g — LK/[D(Z—TS)]. (4)

Notice, in particular, that £ is not dependent on the drive rate
or w.

To confirm this, we consider the Manna sandpile model
with periodic boundary conditions, slow driving (i.e., w=%0),
and bulk dissipation. The model is studied here on a 2D
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FIG. 1. (Color online) Scaling plots of the avalanche-size distri-
butions from the two-dimensional Manna model with bulk dissipa-
tion. The inset presents the collapse in the case k=1, while in the
main figure the case k=3 is shown. Both collapses correspond to
the value 7,=1.28.
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lattice, where for each lattice site i one assigns an integer
variable z; (the number of “grains”). If z;>z.=1, a “top-
pling” occurs and the grains are redistributed according to
z;—z;—2 and z,,=2,,+1, where z,, are two randomly cho-
sen nearest neighbors of site i. The dissipation is imple-
mented by removing a toppling grain from the system with
probability exL™*. Here we consider the two cases with «
=1 and =3, respectively. In Fig. 1 we show that the scaling
follows the predictions of absorbing phase transitions: the
cutoff scale of the avalanche-size distribution scales accord-
ing to Eq. (4), regardless of the L dependence of e.

To summarize, we would like to point out that the con-
clusions of Pruessner and Peters are misleading in the sense
that avalanche statistics in sandpile models indeed follow
from the underlying absorbing state transition whenever one
studies the slow driving limit w— > 8/ v. This is the condi-
tion of complete time-scale separation between driving and
avalanche propagation that has been recognized already in
the early literature as the crucial ingredient for SOC in sand-
pile models [5].
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